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A general study of [Tb2] molecular magnet is presented using the general spin Hamiltonian formalism. A
spin-spin correlators determined for a spin wave functions in [Tb2] are analyzed numerically and com-
pared in details with the results obtained by means of conventional quantum mechanics. It is shown that
the various expectation values of the spin operators and a study of their corresponding probability dis-
tributions allow to have a novel understanding in spin dynamics of entangled qubits in quantum [Tb2]
system. The obtained results reveal that the properties of spin-spin correlators are responsible for the
entanglement of the spin qubit under a pulse magnetic field. It allows us to present some quantum cir-
cuits determined for quantum computing within SSNQ based on [Tb2] molecule, including the CNOT and
SWAP gates.

� 2017 Published by Elsevier B.V.
1. Introduction

The problem related with the switching rate of the atomic spins
in both the modern magnetic logic and magnetic storage devices
under the terahertz regime is one of the most challenging task
for information processing nowadays [1,2]. The contemporary phy-
sics, applying to solve this problem, faces with serious limitations
arising during technological transfer. Therefore, we have to invent
new paradigms based on the quantum spin dynamics in the
picosecond regime. This challenge can be met by a simulation of
the quantum spin switching in a picosecond pulsed magnetic field
[3,4]. Up to now, it is not a trivial task to find an accessible meth-
ods, which are able to generate the intense sub-picosecond mag-
netic pulses localized at the atomic scale limit. However, it was
shown recently [5], that bimetallic nanorings can be treated as a
potential nanoscale sources of the intense ultrashort (few tenths
of Tesla) magnetic pulses. Therefore, the ability to generate strong
magnetic fields localized at nanoscale is of a great interest nowa-
days, since it allows us to elucidate the magnetization and spin
dynamics at sub-picosecond time and nanometer length scales
[6]. For a CNOT quantum gates are using non-symmetric ligands.
Ligand H3L4 exhibits a collection of donor groups disposed in a
way that could favor the aggregation of two metals in different
coordination environments. Indeed, single lanthanide ions are
good candidates for encoding quantum information, since they
very often exhibit, as a result of their strong zero field splitting
(ZFS), a very well isolated ground state doublet, which represents
an effective S = 1/2, thus providing for good realizations of qubits.
In addition, their spin states exhibit long decoherence (with mea-
sured relaxation times, T2, of up to 7 ls), adding a very important
quality to their functionality. The reaction of H3L4 with LnX3
(LnIII = a lanthanide; X� = Cl� or NO�

3 ) in pyridine forms dinuclear
complexes with a general formula [Ln2X(HL4)2(H2L4)(py)(S)]
(S = py or H2O) for practically the entire 4f series. A very weak cou-
pling between both qubits is necessary for the realization of a
CNOT quantum gate, together with a strong anisotropy of both spin
carriers. The case of terbium is the most relevant to quantum com-
puter; the high temperature vMT values are consistent with two

uncoupled TbIII ions (7F6, S = 3, L = 3, J = 6, g = 3/2) whereas the
decline observed upon cooling is a consequence of the depopula-
tion of the various mJ states, down to the Ising limit where only
the two orientations mJ ¼ þ�6 of the J = 6 state of each metal are
populated. These orientations correspond to the two states
embodying each qubit[7]. Therefore, in present paper we explore
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the effect of a magnetic pulse with a high intensity and Tpulse � TTHz

on the switching of spin states in the magnetic molecule [Tb2Cl
(HL4)2(H2L4)(py)2] (hereafter referred to as [Tb2]). We apply the
rectangular magnetic pulse, since, as it was shown already, such
a pulse leads to the switching of spin states in [Tb2] molecule [8].
The magnetic molecules (so-called molecular magnets) are the
most intensively studied, so far theoretically and experimentally,
objects during last decade due to their potential technological
applications and a nice opportunity to investigate the fundamental
properties of matter at the atomic scale limit [9]. These objects
demonstrate at low temperature a slow relaxation of magnetiza-
tion and give rise to magnetic hysteresis, that allows to consider
a single magnetic molecule (SMM) as the smallest practical mag-
netic unit for memory storage or as a spin qubit for quantum com-
puting [10,7]. Therefore, the relevance of [Tb2] molecular magnet
under a magnetic field to be considered for such perspectives will
be discussed in this paper. For this purpose the time-dependent
spin dynamics of [Tb2] is involved within a micromagnetic model
based on the general spin Hamiltonian formalism, where the spin
is considered as a spatial- and time-dependent continuous
function [11]. In this case the dynamics of spins obeys the
Landau-Lifshitz-Gilbert (LLG) equation, involving the various
energy contributions from the exchange, magnetostatic and
Zeeman interactions, and magnetic anisotropy of the spin system
[12,13]. It is known, that correlations are of a great importance
in the study of spin systems [14]. They are directly related to the
entanglement between different atomic spins, which can be
employed in the field of quantum information processing [15].
Therefore, entanglement arising in the correlated quantum spin
systems has become one of the most widely investigated phe-
nomenon in quantum physics during last years [16]. Now it is well
known how to create entanglement in quantum spin systems, but
how it propagates inside a system is still an important fundamen-
tal question in quantum information theory. Therefore, the theo-
retical descriptions of the time-dependent properties of the
correlated quantum spin systems are very important now days
[17–19]. Recently it was claimed, that the controlled and manipu-
lated entanglement in the quantum spin systems could be realized
precisely and effectively by means of the required dynamical oper-
ations in the presence of the magnetic pulse [15,18]. Moreover, it
was shown also [4] that the solid state spin-based system with a
definite spin structure can be considered as a spin system of n-
qubits (SSNQ), which demonstrates the prolonged time of the
decogerence demanded for quantum information processing
[20,21]. For implementation of quantum computation one can
treat a quantum spin system as a SSNQ, where the couplings
between the spin qubits can be controlled externally, for instance
by the applied magnetic pulse or temperature. Therefore, the sys-
tematic studies of the inherent relationship between the strength
of the entanglement and the peculiarities of spin structure of a
SSNQ are carried out in order to find the optimal time-dependent
spin structures with specific types of the controlled and engineered
entanglements [17,22,23]. However, the successful implementa-
tion of quantum computation demands the physical realization
not only a SSNQ, but quantum gates also [16]. It was shown
recently, that molecules containing two well defined spin qubits
can provide attractive prototypes for the universal controlled-
NOT (CNOT) and SWAP quantum gates [10,7]. In order to realize
CNOT both spin qubits must exhibit a mutual interaction much
weaker than the energy difference between spin states within each
qubit in the presence of an external magnetic field, that can be
reached with a strong axially anisotropic spins. Moreover, the con-
trol and target qubits must be different, thereby they can be
addressed specifically. A SWAP gate requires that the spins of both
qubits exhibit a weak antiferromagnetic Heisenberg coupling. In
this case, a system can be modified at will during a period of time,
that lets the system evolves quantum mechanically and undergoes
the transformation dictated by this operation [7]. In order to carry
out these two operations it is necessary that spin qubits of the
quantum gates have to exhibit the entangled states [24].

2. Theoretical aspects

To study the properties of a molecular magnet, we apply in the
present work the theoretical approach based on the irreducible
tensor operator (ITO) technique [25]. In the framework of this
approach a molecular magnet with an arbitrary topology and an
arbitrary number of the magnetic sites (or states), N, can be
ascribed by the local spins S1, S2,. . ., SN , which can have the differ-
ent values in general. In this case, one can use the following succes-
sive scheme to present a spin coupling in the system:

S1 þ S2 ¼ Sð2Þ; Sð2Þ þ S3 ¼ Sð3Þ; . . . ; SðN�1Þ þ SN ¼ S; ð1Þ
where S represents the complete set of the intermediate spin quan-

tum numbers SðkÞ with k = 1,2,. . ., N � 1. The eigenstates jSMii of the
general spin Hamiltonian (GSH) bHspin of the system are given by the

linear combinations of the basis states jSðlÞMðlÞi:

jSMii ¼
XN
l¼1

ciljSðlÞMðlÞi; ð2Þ

where M ¼ �S; . . . ; S and the coefficients cil can be evaluated by

diagonalization of the bHspin. The main physical interactions con-
tributing to this spin Hamiltonian were considered in previous
studies [26,27]. Based on these works we can study the spin dynam-
ics of the system using the LLG equation derived from the quantum
theory with the GSH. For instance, to study the spin structure of
[Tb2] molecule we apply the GSH of the following form:

bHspin ¼ bHex þ bHan þ bHZEE þ bHpulseðtÞ; ð3Þ
where Ĥex represents the isotropic exchange interaction in the
Heisenberg-Dirac Hamiltonian, Han represents the anisotropic
exchange interaction due to the axial single-ion anisotropy, HZEE

represents the interaction between the spin system and the exter-

nal magnetic field, and bHpulseðtÞ is an external magnetic pulse. Each

term of the bHspin can be presented as a combination of the irre-
ducible tensor operators [25,26]. For instance, all isotropic terms
of the GSH are described by the rank-0 tensor operators which have
the non zero matrix elements only for the eigenstates with the same
total spin quantum number S (DS, DM = 0). In this case, the repre-
sentative matrices can be decomposed into the blocks depending
only on the value of S and M. While all anisotropic terms of the
GSH are described by the rank-2 tensor operators related to the
non zero matrix elements between eigenstates with
DS ¼ 0;�1;�2. Their matrices cannot be decomposed into the
blocks depending only on the total spin quantum number S due
to the S-mixing between spin states with different S. We apply
the ITO’s technique to the GSH within the MAGPACK code, which
has been developed to study efficiently the magnetic properties of
a various nanoscale magnets [25].

To study the magnetic properties of [Tb2] molecule, we’ll treat
each Tb atom as a single atomic spin interacting with its own sur-
rounding. Such a treatment is a suitable approximation [7]. Besides
that, we can also restrict ourselves considering the GSH in the
framework of the mean field theory, as a simple but very useful
approach [28]. In this case such a ”mean field” spin Hamiltonian,

which describes the interaction of the spin bS with the external
magnetic field, is determined by its flux Heff and can be written as:
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bHspin ¼ �cHeff
bS; ð4Þ

where c is the gyromagnetic ratio coming from the relation
between magnetic moment and spin. The effective magnetic field
Heff describes the external magnetic field (Hz directed along arbi-
trary Z axis), the anisotropy (Han) and exchange (Hex) fields, and
the external magnetic pulse (HpulseðtÞ) field. The applied ”mean
field” [29] approximation leads to Heff ) Hmean

eff with replacement
bS ) M ¼ chbSi. It takes into account an average effect of the neigh-
bors but neglects the correlation effects between the spin and its
neighbors. Since each Tb atom is considered as a single atomic spin,
such approach is quite suitable for [Tb2] molecule. Thereon, using
the Eq. (4), we obtain the following equation for the dynamics of
spin [13]:

@hbSi
@t

¼ 1
1þ k2

hbSi �Hmean
eff � k

1þ k2
hbSi � ðhbSi �Hmean

eff Þ; ð5Þ

where k is the damping constant. The effective magnetic field Hmean
eff

can be found as a variation of the free magnetic energy with mag-
netization M:

Hmean
eff ðM; tÞ ¼ � dF

dM
;

where F is the free energy of the magnetic system:

F ¼ �NkBT ln ZðHzÞ
with the partition function

ZðHzÞ ¼
X
M;l

exp½��lðMÞ=kBT�
X
M

exp½�geMHz=kBT�; ð6Þ

where kB and ge are the Boltzmann constant and the Landé factor,
respectively. Here, we have the energy levels �lðMÞ, which are the

eigenvalues of the bHspin, and, thus, can be derived from diagonaliza-
tion procedure. Index l runs over the energy levels with a given
total spin projection M. Once the energy levels of the spin Hamilto-
nian are obtained, one can evaluate a different thermodynamic
properties of the magnetic system such as the magnetization, the
magnetic susceptibility, and the magnetic specific heat. Since fur-
ther in our study of [Tb2] molecule its anisotropic part of the spin
Hamiltonian will be treated only as a scalar, the magnetic proper-
ties of the system do not depend on the direction of the external
magnetic field. Thereby, we can consider the external magnetic field
Hz directed along arbitrary Z axis, that is chosen as a spin quantiza-
tion direction of the molecule. In this case we can write the energies
of the system as �lðMsÞ þ geMHz. Using this expression, one can
evaluate the magnetization M via a standard thermodynamic
definition:

M ¼ @FðM;HzÞ
@H

¼ NkT
@ ln Z
@H

: ð7Þ

Thereby, the effective magnetic field Hmean
eff can be derived from

the free energy functional as:

Hmean
eff ¼ � dðFðM;HzÞ þ FðtÞÞ

dM
¼

¼ � @FðM;HzÞ
@M

þ Hx
pulseðtÞ: ð8Þ

Thus, we have derived, by means of Eqs. (5) and (8), a general
form of the time-dependent spin equation for a system of the spins,
precessing in an effective magnetic field Hmean

eff , with interactions
specified directly in the magnetic molecule. By solving Eq. (5),

we can find the time-dependent expectations values hbSx;y;ziðtÞ,
which describe the spin dynamics of the system. We use them fur-
ther to define the spin–spin correlation functions Cij for the entan-

gled ground state jSMðijÞ
0 i ¼ aijSMii þ bjjSMij of the system [30]:

Cxx
ij ðtÞ ¼ hSMðijÞ

0 jbS x
i ðtÞbS x

j ðtÞjSMðijÞ
0 i ¼ hSx

i iðtÞhSx
j iðtÞ; ð9Þ

Cyy
ij ðtÞ ¼ hSMðijÞ

0 jbS y
i ðtÞbS y

j ðtÞjSMðijÞ
0 i ¼ hSy

i iðtÞhSy
j iðtÞ; ð10Þ

Czz
ij ðtÞ ¼ hSMðijÞ

0 jbS z
i ðtÞbS z

j ðtÞjSMðijÞ
0 i ¼ hSz

i iðtÞhSz
j iðtÞ; ð11Þ

Cxy
ij ðtÞ ¼ hSMðijÞ

0 jbS x
i ðtÞbS y

j ðtÞjSMðijÞ
0 i ¼ hSx

i iðtÞhSy
j iðtÞ; ð12Þ

Cxz
ij ðtÞ ¼ hSMðijÞ

0 jbS x
i ðtÞbS z

j ðtÞjSMðijÞ
0 i ¼ hSx

i iðtÞhSz
j iðtÞ; ð13Þ

Cyz
ij ðtÞ ¼ hSMðijÞ

0 jbS y
i ðtÞbS z

j ðtÞjSMðijÞ
0 i ¼ hSy

i iðtÞhSz
j iðtÞ: ð14Þ

The ground state is in the subspace A for which MðlÞ = 0 for all
l. The entanglement entropy between a subspace A and the rest of
the system R is given by:

SA ¼ �TrðqAlog2qAÞ; ð15Þ
where qA is the reduced density matrix of the subspace A obtained
by tracing out over all those parts of the Hilbert space not associ-
ated with A. We consider the subspace Aij � i; jf g consisting of all
spin pairs (not only neighboring) i and j of the ground states
jSðlÞMðlÞ ¼ 0i [14]. For the rest of the system R is given by
Rkl � k; lf g. The matrix elements of the reduced density matrix,
needed to calculate the entanglement, can be written in terms of
the spin–spin correlation functions Cabij ðtÞ (see Eqs. (9)–(14):

qðijÞ
A ðtÞ ¼

X
a;b2x;y;z

hSMðijÞ
0 jbSai ðtÞbSb

j ðtÞjSMðijÞ
0 iqðijÞ

lm ; ð16Þ

where

qðijÞ
lm ¼ jSMðijÞ

0 il � jSMðijÞ
0 im:

Suppose jAiji
� �

and jRklif g are the orthonormal basis states of
the many-body Hilbert space of the subsystems A andR. A general
quantum spin state of the composite system can be described by a
wave function [31]:

jWi ¼
X
ij;kl

Cij;kljAijijRkli: ð17Þ

Here, a rectangular matrix C can be presented always in the
form UDVy, where U is unitary, D is diagonal and the rows of V
are orthonormal. It is known already as the singular-value decom-
position (SVD) and is similar to the principal-axis transformation of
a symmetric square matrix [16]. Using this decomposition in Eq.
(17) and forming a new basis by combining the jAiji with U and

the jRkli with Vy, one can obtain the Schmidt decomposition [16]:

jWi ¼
XRank
k¼1

rkjUA
k ijUR

k i; ð18Þ

which represents the total wave function jWi of the system as a sin-
gle sum of products of the orthonormal functions. Here the Rank
number of the terms is limited by the smallest one of the two Hil-
bert spaces and the weight factors rk are the matrix elements of the
diagonal matrix D. If jWi is normalized, their absolute magnitudes
squared sum to one. The entanglement properties of a system are
performed with the set of rk:

SAðtÞ ¼ �
XRank
k¼1

skðtÞlog2skðtÞ; ð19Þ
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where

skðtÞ ¼ hSai iðtÞhSbj iðtÞr2
k : ð20Þ
3. Results and discussion

Nowadays the superconductors, trapped ions, nuclear magnetic
resonance in organic liquids, quantum dots, molecular magnets are
considered as the most promising candidates for generating a
switch over a spin states, that is necessary condition needed to
realize a spin qubits. Therefore, a certain new magnetic molecules,

such as the complex Tbþ3- [Tb2Cl(HL4)2(H2L4)(py)2], are treated
now for perspective applications in the quantum computers [7].
The calculated (within the GSH model) spin levels of [Tb2] mole-
cule are shown in Fig. 1. They are grouped according to the spin
moment M. The obtained energy spectrum demonstrates several
peculiar features such as the presence of the levels belonging to
M = 0 (the ground state and low-lying excited states) and M =
�ð1	 6Þ (the high-lying excited states) separated by a small gap,
and the sets of the excited levels (P80 meV) well separated from
the low-lying ones. Thereby, such a spin system demonstrates
the ability to generate a spin switching over states. However, there
are several key points, or counterparts related to successful realiza-
tion of the quantum computing, such as the direct interaction of a
spin qubit with the external media that eventually leads to the loss
of quantum information, and a spin switching achieved only in the
presence of the external magnetic field. Up to now no single-
molecular system could be found in the literature, where the prime
element involved in quantum-information processing is shielded
within a spin qubit from the external media, and a spin qubit is
realized thereto in the absence of the external magnetic field.
Therefore, in this work we consider a possibility to switch the spin
states in the system by pulses of a magnetic field of the different
Fig. 1. (Color online) Spin structure of [Tb2] magnetic molecu
amplitude and duration. Recently, we have studied and discussed
the spin dynamics of the Co- octaethylporphyrin (CoOEP) molecule
in the low spin (LS) and high spin (HS) states induced by the
applied magnetic pulse of 36.8T [27]. We have shown that in case
of the HS state a spin switching of the CoOEP molecule is character-
ized by a long lifetime and depends on the magnitude and duration
of the applied field. The applied external field reverted the system
from the LS state to its ground state via a spin switching, whereas
the system in the HS state remained in the excited state for a long
time. Here, in contrast to work [27], we study the spin dynamics of
[Tb2] magnetic molecule under the magnetic pulse with the dura-
tion of time about hundreds picoseconds. In Fig. 2 we present the
result of our calculations, which demonstrate switching of a spin
hSzifrom one state to another caused by the magnetic pulse with
amplitude of 27T and duration of 173 ps. It is well seen, that
switching between two distinguishable spin states (here as spin-
up j *i and spin-down j +i) occurs practically at the same time
when a magnetic pulse is emerging. Moreover the effect of spin
switching remains steady even the applied magnetic field is
switched off after 173 ps. Therefore, in order to control a spin
switching over a spin states in n-qubit system based on [Tb2] mole-
cule, we propose to use a scheme, which involves two magnetic
pulses operating consecutively. We show in Fig. 3 the result of
our calculations obtained for two applied magnetic pulses. We find
in this case that both magnetic pulses applied consecutively to
[Tb2] molecule lead in turn to a spin switching hSzi between two
distinguishable states. It means that one can control a spin states
in the system by using both switch on and off of the magnetic
pulses.

Further, we investigate the dynamics of the spin–spin correla-
tions and entanglement entropy in SSNQ based on [Tb2] molecule,
where spins are coupled via the GSH and affected by the time-
dependent magnetic pulse. For these purposes the time-evolution
le calculated using the parameterization reported in [7].



Fig. 2. (Color online) The evolution of the time-dependent quantum mechanical expectations hSx;y;ziðtÞ of [Tb2] molecule under a magnetic pulse Hpulse = 27T.
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correlation functions Cabij ðtÞ (see Eqs. (9)–(14) have been calculated
and used to study the dynamics of entanglement entropy in SSNQ
of quantum [Tb2] system. In Fig. 3 we plot the evolution of the
entanglement entropy for n-qubit [Tb2] system (with n = 49 of a
spin states) using the following parameters in our calculations:
S = 3; HZEE = 3.1T; Hpulse=27T; Jex = �0.0014 meV; the axial ZFS
parameter D = �1.5 meV, reported recently for [Tb2] magnetic
molecule [7]. As shown in Fig. 3 the entanglement exhibits oscilla-
tory behavior at the beginning of time evolution from t ¼ 0 up to
t ¼ 85 ps, when the pulsed magnetic field is emerging in the sys-
tem. Stabilization comes up at the end of the lifetime of the first
magnetic pulse. During the time interval between two consecutive
magnetic pulses the entanglement starts to oscillate again within a
short interval of time about 40 ps and reaches its maximum value.
After that, the emergence of the second pulse causes the strong
oscillations with a very short duration of time about 10 ps and
leads the system to its maximum entanglement immediately.
Thus, the obtained results reveal that the consecutively applied
magnetic pulses with a certain duration and amplitude enable us
to achieve the maximum entanglement in SSNQ, which does not
change during a lifetime of an emerging pulse.

To define the entanglement of a SSNQ in the ground state, we
determine the eigenvalues and eigenfunction of 49�49 matrix
and ascribe the ground state through jSM0i � jSM ¼ 0i:
j00i; j10i; j20i; j30i; j40i; j50i; j60if g. By applying the Hadamard

transform [24], we find two-qubit transformation jSMðijÞ
0 i

n o
. Based

on this result and on realization of two-qubit CNOT gate reported
for [Tb2] earlier [10], we obtain the entangled states for quantum
[Tb2] system:

CNOT : jSMðijÞ
0 i # jS0ii; jS0ii 
 jS0ij

n o

This procedure can be extended to other controlled unitary
operations like CU operation defined as [32]:
CU : jS0iihS0jj � Is þ jS0iihS0jj � UðijÞ
s

The above unitary operation performs in general the transfor-
mation Us over a set of qubits s (in the case of two qubits s = 2) if
the state of the controlled qubit i is j1i, and does not act otherwise.
The transformation

UðijÞ
s ¼ expð�ibHspintÞ ¼ expðicHeff

bSijtÞ
is the operational representation of CU gate for a SSNQ. Based on
that, we can perform here the class of the quantum computers that
allows one to evaluate the ground state quantum algorithms in a
register of a SSNQ with the physical spin–spin correlation functions
of the form Cabij ðtÞ. In the case of [Tb2] qubit one can obtain the cor-

relation functions with cWs ¼ bU y
s
bUs and bUs unitary operators acting

on s [33]. For this purpose [Tb2] qubit is initialized at first in the

state jSMðijÞ
0 i ¼ aijSM0ii þ bjjSM0ij by applying the unitary Hadamard

gate (H) to the state jSM0ii. Second, one makes it interact with the
qubit system, initially in a certain pure state jSM0ii, through two

controlled unitary operations bUs, associated to the Us operations
respectively. After that, the final state of the quantum register
jWf i can be ascribed by

jWf i ¼ bUs
bUsjSMðijÞ

0 ijSM0i
¼ aijSM0ii � UsjSM0i þ bjjSM0ij � UsjSM0i: ð21Þ

Thus,

UðijÞ
s ¼ UðiÞ

s UðjÞ
s ¼ expðicHeff

bSitÞ expðicHeff
bSjtÞ: ð22Þ

In Fig. 4 we present the obtained results of the time evolution of
Us calculated for different values of t. An effective field Heff is pro-

portional to the spin operator hbSi. It means qualitatively, that the

Heff behaves in the same manner as the hbSi does, and it is well seen
from the Fig. 5. Thus, dealing with a magnetic pulse of a certain



Fig. 3. (Color online) The evolution of the time-dependent quantum mechanical expectations hSx;y;ziðtÞ, correlation function and entanglement entropy of [Tb2] molecule
under two magnetic pulses Hpulse = 27T.
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duration and amplitude, we can create a quantum register and
operate with its help in the quantum algorithm, creating in the cer-
tain time the CU, CNOT; SWAP gates by means of an effective field

Heff and the spin operator hbSi in quantum [Tb2] system. For
instance, as it is seen from Fig. 4, during the action of the first mag-
netic pulse Us creates the quantum CNOT gate:j10i # j11i, and the
quantum SWAP gate is available in an interval of time between
twomagnetic pulses, whereas by the action of the secondmagnetic
pulse the quantum CNOT gate:j10i # j10i is realized. It is worth to
note, that in quantum computing one is faced with a necessity to
have a deal with the physical interactions in the Hamiltonian.
Actually, these interactions not necessarily would have to lead to
a quantummechanical evolution of the system, which can be inter-
preted as CNOT gate. Nevertheless, there is always possible to find
within Hamiltonians available for various physical systems the
two-qubit gates from which, in conjunction with one-qubit gates,
the CNOT gates can be realized [34]. For instance, in Fig. 4 we
demonstrate one of an explicit construction for how to realize
the CNOT gates from the two-body interactions eUyzz
s � Uy

s U
z
s U

z
s that

are available in our quantum [Tb2] system. However, the key prob-
lem is how many CNOT and one-qubit gates are necessary and suf-
ficient in order to implement any two-qubit gate. To solve this
problem, one can employ the following criterion, that makes it is
possible to determine the number of CNOT gates needed to realize
a two-qubit gate with a help of one-qubit operations: Us can be
realized using two CNOT gates if and only if Tr(Us) is real

[24,35,36]. In our case TrðUsÞ ¼ 2 cosðcHeff
bSijtÞ is real, and the rele-

vant solution for [Tb2] system is illustrated in Fig. 4, where ReðU z
s Þ

is shown in the form of two CNOT gates.
4. Conclusions

In the present paper a general study of [Tb2] molecular magnet
is carried out using the general spin Hamiltonian formalism. We
present for this molecule the results of the theoretical study of



Fig. 4. (Color online) The time evolution behavior of the real parts (Re) of U z
s ;Us , and eUyzz

s in [Tb2] molecule under two magnetic pulses Hpulse = 27T.

Fig. 5. (Color online) The time evolution behavior of the quantum mechanical expectation hSziðtÞ and effective magnetic field Heff in [Tb2] molecule under two magnetic
pulses Hpulse = 27T.
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the spin behavior affected by the magnetic pulse with the duration
of 200 ps and amplitude of 27T. Based on the LLG equation the spin
dynamics of [Tb2] molecule is described. We obtain also a general
form of the time-dependent spin equation for a system of spins
precessing in an effective magnetic field with specified interac-
tions. In order to control a spin switching of n-qubit [Tb2] system,
we propose a scheme, which involves two magnetic pulses acting
consecutively on the magnetic molecule. It is shown, that one
can control a spin states in the system by switching on and off of
the magnetic pulses. The spin–spin correlators of a spin wave func-
tions in [Tb2] molecule are analyzed numerically and compared in
details with the results obtained by standard quantum mechanics.
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We demonstrate that, besides the various expectation values of the
spin operators, a study of their corresponding probability distribu-
tions allows to have a novel understanding in spin dynamics of
entangled qubit. It is shown also via conventional quantum
mechanics that the properties of spin–spin correlators are respon-
sible for various entanglement in spin qubit under a pulse mag-
netic field. We propose with the general spin Hamiltonian some
compact schemes for implementation of quantum computing in
SSNQ based on [Tb2] molecule, including the CNOT and SWAP
gates.
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