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Abstract—A new approach is presented that allows solving optimization problems of nanosized semiconduc-
tor heterostructures. We have formulated and solved the problem of determining the optimal doping of a bar-
rier layer consisting of a number of sublayers, which provides a preset concentration of electrons in the con-
duction channel of semiconductor heterostructures. To solve the problem, effective optimization algorithms
based on gradient methods are developed. As an example, an Al ,;GaN/GaN heterostructure with a total
barrier layer thickness of 30 nm is considered. The results obtained in the numerical experiment are consistent
with the modern trend towards the transition from a homogeneous doping profile to a planar d-doping in
field-effect transistor manufacturing technologies. The developed technique of mathematical simulation and
optimization can be used in field-effect transistor manufacturing technologies. The approaches presented in
the work create the conditions for the automated design of such structures.
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INTRODUCTION

The output characteristics of heterostructural
semiconductor microwave devices are determined by a
variety of factors that reflect both the structural and
technological features of manufacturing heterostruc-
tures. In this case, it is extremely important to choose
the optimal parameters that determine the basic elec-
trophysical characteristics of the structure—the con-
centration and mobility of charge carriers in the chan-
nels of a two-dimensional electron gas (2DEG) [1].

The problems of the mathematical modeling of
such structures are discussed in [2, 3]. The following
scheme of multiscale modeling was implemented.
Three levels of characteristic scales were allocated.
The description of the system at the atomic level is car-
ried out using crystallographic information and a
quantum-mechanical model based on the electron
density functional theory [4, 5]. The obtained infor-
mation is transferred to the model of a nanoscale level,
where it is used to calculate the distribution of charge
carriers in a heterostructure. At this level, a quantum-
mechanical description is also used. The mathemati-
cal model is a system of Schrodinger and Poisson
equations [6]. The data obtained from the solutions of
these equations, namely the wave functions and the
density distribution of charge carriers across the lay-
ered structure enter the next scale model, where the
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mobility of charge carriers in the longitudinal direc-
tion is calculated. In this case, a wide range of electron
scattering mechanisms is taken into account: scatter-
ing by optical and acoustic phonons, the roughness of
the heterointerface, charged centers and dislocations,
and piezoelectric scattering. In [7], the scattering by
the roughness of a heterointerface was considered.
The roughness of the heterointerface was shown to
change the width of the quantum well, and, conse-
quently, the position of the energy levels. Such a fluc-
tuation in the potential causes the scattering of charge
carriers. The contribution of this scattering process
depends strongly on the technological perfection of
the heterostructures. A comparison of the results of
the calculations with the experimental data [7, 8]
showed a sufficiently high simulation accuracy for cal-
culating the carrier concentration and electron mobil-
ity of a two-dimensional electron gas. The developed
technique and means for numerical simulation allow us
to quickly perform a multioptional analysis of multilay-
ered nanosized semiconductor structures. This creates a
basis for solving a number of optimization problems that
are relevant in modern microwave electronics.

In [9], the results of a multioptional computer
analysis of electron density and mobility in nanosized
AlGaN/GaN nitride heterostructures are presented.
Such compounds have a wurtzite crystalline structure.
As a result of spontaneous and piezoelectric polariza-
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Fig. 1. Multilayer semiconductor heterostructure [7].

tion, uncompensated charges appear on the heteroin-
terfaces playing a decisive role in the formation of
2DEG channels [8]. In [9], the authors used the
results of modeling from first principles, or in other
words, quantum-mechanical modeling at the atomis-
tic level. In this case, the calculation of the atomic
(nuclei) positions and the distribution of the electron
density in the internuclear space are determined from
the condition for minimizing the potential energy of
the system. The ab initio calculation makes it possible
to obtain the charge densities on the interfaces, which
are then used when calculating the electron density
and mobility of the electrons. Computer experiments
made it possible to determine the dependence of the
concentration and mobility of the electrons on the
molar content of aluminum in the barrier layer, on the
thickness of the barrier layer, and on a variety of other
characteristics. In many cases, such dependences
allow us to determine the optimal parameters of the
heterostructure from the point of view of the concen-
tration and mobility of the charge carriers. However,
problems often arise when it is necessary to use the
optimization theory technique. Such problems
involve, in particular, inverse problems in determining
the characteristics of grown heterostructures that are
inaccessible by direct measurement, based on the
experimental data on the carrier concentration and
mobility in 2DEG. Another class of problems involves
the determination of the optimal doping of a barrier
layer consisting of a number of sublayers. Such prob-
lems are considered in this article.

MATHEMATICAL MODEL

A typical scheme of a nanosized semiconductor
heterostructure is shown in Fig. 1 [7]. This hetero-
structure is based on gallium nitride and ternary solu-
tions. It was grown at the Institute of Semiconductor
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Physics of the Siberian Branch, Russian Academy of
Sciences (SB RAS).

The presence of layers grown from semiconductor
materials witha different width of the forbidden band,
in combination with polarization effects, provides the
formation of a quantum-dimensional well for elec-
trons with a width of the order of several nanometers
in the vicinity of a heterointerface in the layer with a
smaller width of the forbidden band (GaN). The elec-
tron motion in a direction normal to the heterointer-
face is limited, and the energy levels are quantized.
Electrons at these levels can freely move in the plane
of the heterointerface, and a two-dimensional elec-
tron gas is formed (schematically, the region of the
2DEG formation is shown in Fig. 1 by the points).

The mathematical model to describe the distribu-
tion of electrons in such structures is a system of
Schrodinger and Poisson equations:

> (m* @ dzj +V(Y(z) = Ey(z); (1

d(., .do S
d—Z(S(z)d—zj = —e[u(z) — n(z)] + ;GIS(Z -z) (@

V(z) =—e9(z)+AE,(z); 3)
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where E; and y(z) are the energy levels and the corre-

I
sponding wave functions, J. l|!l-2 (2)dz = 1; [isthe num-
0

ber of meaningful energy levels from the point of view
of their contribution to sum (4); n(z) is the electron
density; 7 is Planck’s constant; e is the electron
charge; m* is the effective mass of the electron; Ey is
the Fermi level position; @(z) is the electrostatic
potential; G, are the charge densities at the interfaces
(boundaries); d is the delta-function; z is the interface
location; M is the number of heterointerfaces with an
uncompensated charge; € is the dielectric permittivity
of material; AE, is the conduction band shift; kg is
Boltzmann’s constant; and T is temperature. Func-
tion u(z) describes the distribution of dopant impuri-
ties in the system, u(z) = Ny(z) — Na(z), where Ny(z)
and N,(z) are the concentrations of the donor and
acceptor impurities, respectively. This function will be
further considered as a control function. Model (1)—(5)
incorporates the fact that the values m*, €, and AE, can
vary from layer-to-layer, i.e., functions m*(z), €(z) and
AE_(7) belong to the class of piecewise-constant func-
tions. In this case, the temperature of the heterostruc-
ture is assumed to be constant.
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On the boundaries of the system (z=0and z= L,
where L is the total thickness of the layered structure),
the wave functions should take the zero values

w(0) =0, w(L)=0. (6)

On the left boundary (z = 0), the potential barrier
Oy, is set. It is formed in the subcontact layer of the
semiconductor, which borders the metal (Schottky
barrier). In addition, it is possible to set the offset @,
due to the applied voltage. On the right boundary (z= L),
the natural condition is the absence of an electric field.
Therefore, the boundary conditions for the Poisson
equation become

¢(0) =, + 0., ¢'(L)=0. (7

The solution of the spectral problem (1) (the
Schrédinger equation), the definition of the eigenvalues
and eigenfunctions/vectors of the differential/matrix
operator, depends on the electrostatic potential @. The
distribution @(z) in the structure is determined by
Poisson’s equation (2).

In addition, the electron density n(z) enters the
right-hand side of the Poisson equation. The electron
density is determined by the energy levels E; and the
wave functions Y(z), according to the Fermi-Dirac
statistics (see Eqgs. (4)—(5)). The self-consistent solu-
tion of this system yields the required energy levels E;
and the corresponding wave functions y;(z) yield the
potential well profile V(z) and the electron density dis-
tribution in the heterostructure xn(z).

The algorithms used for solving problem (1)—(7)
are described in detail in [3]. Note that the main com-
putational complexity is associated with the conver-
gence of the global iterations needed for matching the
solutions of the Schrodinger and Poisson equations. In
order to speed up the computational process, an
approach based on the approximation of the nonlinear
dependence of the electron density on the potential in
combination with the linearization of the Poisson
equation was realized. The development of an effective
algorithm for solving direct problem (1)—(7) is an
important basis for solving optimization problems.

We now turn to the formulation of the optimization
problem. The most important indicator of the effi-
ciency of a heterostructure is the concentration of

L
electrons in the 2DEG channel, N = IO n(z)dz. As

shown in [9], this quantity is crucial in many cases for
the mobility of electrons. Although the mobility
decreases with an increasing concentration (as a rule),
the product of the concentration and mobility (con-
ductivity) increases, which causes an increase in V. It
should be noted that an excessive increase in concen-
tration may be accompanied by negative effects [1].
Due to this, a reasonable compromise is usually to set
the desired level of electron concentration N°. The
main controlling factor affecting N* is the concentra-
tion of donors in the barrier layer. The barrier layer is

RUSSIAN MICROELECTRONICS

Vol. 47 No. 8

563

the region to the left of the 2DEG channel (see Fig. 1),
0 <7<z, where z, is the barrier layer thickness; z, < L.

It is desirable to reduce the average doping level (or
total ionization) of the barrier layer. This can help
avoid excessive scattering of electrons on distant
charged centers. Thus, the functional to be minimized
can be written in the form

sy =[[ oz - N +w [upc] . ®)

where w is the weight factor. Hereinafter, the limits of
integration are omitted, since integration is always
implied throughout the entire region.

There may be technological limitations on the dop-
ing of individual layers during the growth of the het-
erostructure, which is reflected in the constraints on
the control function:

0<u(z)<x(z). )

Here the constraint #(z) = 0 means that only donor
doping is considered. This is due to the fact that just
such doping facilitates increasing the electron concen-
tration in 2DEG. Moreover, when striving to achieve
the highest possible electron concentration (high
value of N*), the restriction on the state of the system
becomes significant:

V(z)—E;, 20, z<z,. (10)

This restriction allows us to avoid the formation of
parallel conduction channel in the barrier layer (z < z;,).

Thus, the problem of finding the dopant distribu-
tion in the barrier layer, which provides a preset con-
centration of electrons in the 2DEG conducting chan-
nel, has been formulated. In many cases, the solution
of such a problem is not unique: different doping
options may correspond to a preset electron concen-
tration. In this case, the heterostructure designer can
use different options; however, the choice is substan-
tially narrowed by the imposed restrictions and the
influence of the second term of the functional.

Gradient methods are effective for solving prob-
lem (1)—(10).

Let us consider the problem of determining the
gradient of a functional. Here the principal point is the
previously established relationship between the incre-
ments of the electron density and potential [3, 10]. We
use the notation R(z) for shortening the expression for
the dependence of the electron density increment on
the potential increment:

dn(z) = R(2)8¢(z);

EF - Ei
exp| ————
ksT
E

1+exp (%}
B

A detailed derivation of this formula is given in [3].

(1)

R() = %wa@
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The use of expression (11) substantially simplifies
the procedure for determining the gradient of the
functional.

Following the traditional scheme of the calculus of
variations [11], we multiply Eq. (2) by the Lagrange
multiplier p(z), integrate the result over the thickness
of the heterostructure and add to functional (8):

J) = [ j n(z)dz — N*T
| Jue ]| [
X {d% (e(z) j—(zp) +e(u(z) —n(z)) - Z‘ 6,0(z — z;)} dz.

The variation of functional (12) has the form

(12)

8J =2(N — N*) I Sn(z)dz + 2w Uj Su(z)dz

d @) _ }
+jp(z)[ dz(ﬁ(z) iz +e(0u(z) - dn(z)) |dz,

(13)

where U = ju(z)dz.

We integrate the termJ- p(2) [Q (g( 2) @ﬂ dz
dz dz
twice in parts. With allowance for the boundary con-

ditions (7), we obtain

d @ﬂ
[ p(z){ dz(e(z) )|z

d (g2 - doe
| dz[az) dz)&pdz PORO)2(0)

Z

~ P (Lye(L)se(L).
dz
Then Eq. (13) becomes
8J = 2N — N¥) J' Sn(z)dz + 2wU J' Su(z)dz
+ i(e(z) d—”)&p + p(2)e (Bu(z) - dn(2))dz
dz dz
— 200922 0) - 92 (L)e(L)s0(L),
dz dz
or, with allowance for expression (11),
&J = 2N — N*)j R(2)d¢(z)dz + 2w Uj Su(z)dz
+ ji((%(z)d—pj&p + p(2)e (du(z) — R(2)0¢(z))dz
dz dz
— p(0)e0) 322 (0) - 92 (L)e(L)5e(L).
dz dz
Let us compose a system of equations for determin-

ing p(z) in order to zero out all terms that do not con-
tain the vafiation du:

d

(S(Z) d—pj —eR(2)p(z) + 2R(z) (N — N*) = 0; (14)
dz dz
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p0)=0, ¥ =0
dZ z=L
As a result, we obtain the following expression for
the variation of the functional

8/ = [ p(x)edu(z)dz + 2w [ du(z)dz
= j( p(2e + 2wl du(z)dz.

Now we can write down the required gradient of
the functional:

J =p(z)e+ 2wU. (17)

This approach allowed us to construct a relatively
simple problem (14)—(15) for determining the func-
tion p(z). Thus, to find the gradient of the functional,
it is possible to avoid solving the most computationally
complex spectral problem. This allows us to construct
effective optimization algorithms based on gradient
methods in which the direction of the movement
toward the point of the minimum at each step coin-
cides with the direction opposite to the gradient vector
of the function to be minimized.

In particular, the results presented in the next sec-
tion were obtained using the simplest method of gra-
dient descent. The constraints in this work were taken
into account by using the projection of the solution
onto the subspace of constraints at each iteration step.

(15)

(16)

RESULTS OF CALCULATIONS

As an example, consider the Al,,;GaN/GaN het-
erostructure with a total barrier layer thickness of
Aly,sGaN 30 nm. To illustrate the effect of doping
additives, we present the variants of an undoped and
uniformly doped donor impurity barrier layer. The ini-
tial data for the calculations are as follows.

The effective electron masses were assumed equal
to 0.228m, for both materials (m, is the mass of an
electron at rest). The charge density at the
Aly,sGaN/GaN heterointerface determined by the
quantum-mechanical calculation is 1.08 x 10 Q/cm?.
Note that here we consider a problem with one chan-
nel of 2DEG or, in other words, with one heterointer-
face on which an uncompensated charge is formed
(M= 1). The rest of the data were determined from
approximate expressions [5]:

Encan (%) = (0.03x + 10.28)g,;
AE,(x) =0.7(E, (x) — E,(0)),

g
E,(x) 6.13x + 3.42(1 —x);
—e@, = 1.3x+ 0.84;
where g is the electric constant and x is the mole frac-

tion of Al in the AlGaN alloy. The boundary condition
¢(0) = @, for the potential was used.

The calculation results are shown in Fig. 2. Figure 2
shows the distributions of the potential energy and
Vol. 47
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Fig. 2. Potential energy distribution (left scale) and electron
density (right scale) across heterostructure for undoped
(dashed curve) and doped (solid curve) barrier layers.

electronic energy over the thickness of the hetero-
structure. The dashed curves correspond to an
undoped barrier layer and the solid curves correspond
to barriers doped by donors with a constant concentra-
tion of 2.61 X 10"® cm™3. Note that this is the maximum
permissible concentration to satisfy constraint (10).
From Fig. 2 we can see that in the second case the pro-
file of the potential energy acquires a characteristic
flexure and the electron density increases. As a result,
the layered electron concentration N in 2DEG
increases from 8.3 x 102 to 1.27 X 108 cm~2.

Now we pass to the results of solving optimization
problems. Let it be required to provide the 2DEG
electron concentration N* = 1.1 x 103cm=2. We will
seek the solution in the class of piecewise-constant
functions, which corresponds to the technology of

1.2 ~0.5 ~0.4
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osxx 0 H10.3
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manufacturing layered structures. Consider a barrier
layer consisting, for example, of five sublayers. The
possible number of sublayers in the model is not lim-
ited. For simplicity, all the properties of the layers,
with the exception of doping, we assume to be identi-
cal, including their thicknesses, and we impose the
following restrictions:

0<u, <2.5x%x10" cm_3; m=1,...4; us = 0.

The last restriction means that the layer immedi-
ately adjacent to the 2DEG channel is not allowed to
be doped. This is a fairly common restriction, which is
dictated by the need to reduce the scattering by alloy
inhomogeneities. Such sublayers are usually called
spacers. The value 2.5 x 10'%¢cm—3 is taken as an exam-
ple, although it can be higher. In this case, the model
can be applied to arbitrary doping options. The results
of solving this problem are shown in Fig. 3a. The dis-
tribution of the dopant in the sublayers of the barrier

layer x4(z) = n4(z)/n, obtained after optimization (the
impurity concentration is 7; = 5 x 10 cm™3), the
potential energy profile x, and also the distribution of
the electron density N in the heterostructure (the den-
sity corresponds to a value of 102° cm~3) are shown in
this figure.

Next, consider a somewhat modified problem. Let
us remove the restrictions on sublayers 1—4, while at
the same time we increase the influence of the second
term in the functional to be minimized. In other
words, we will try to achieve the given electron con-
centration with the minimal total ionization of the
barrier layer. The results of the solution are shown in
Fig. 3b. We can see that the maximum doping of layer
3 is the most advantageous. In this case, the total ion-
ization of the barrier layer U in the second option of
the calculation turns out to be substantially lower than
in the case of relatively uniform doping. This result
agrees with the modern trend towards a transition

1.2, 1.2 0.4
0.8 40.3
0.8
>
© 04 F 402
G =
0.4
0 H40.1
—0.4 ' . 0 -0
0 200 400 600
z, A

Fig. 3. Distribution of optimal donor concentration (dashed curve, right scale 1), potential energy (marked curve, left scale) and

electron density (solid curve, right scale 2) across heterostructure.
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from a homogeneous doping profile to planar 8-dop-
ing in field-effect transistor manufacturing techniques
[1, 12].

CONCLUSIONS

The means of mathematical modeling and optimiza-
tion, which can be used in field-effect transistor manu-
facturing technologies, are developed. We present
approaches with the help of which the conditions can be
created for the automated design of such structures.
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