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Abstract—A three-level scheme for modeling nanosized semiconductor heterostructures with account
for spontaneous and piezoelectric polarization effects is presented. The scheme combines quantum-
mechanical calculations at the atomic level for obtaining the charge density on heterointerfaces, cal-
culation of the distribution of carriers in the heterostructure based on the solution to the Schrödinger
and Poisson equations, and the calculation of electron mobility in the two-dimensional electron gas
with account for various scattering mechanisms. To speed up the computations of electron density in
the heterostructure, the approach based on the approximation of the nonlinear dependence of the
electron density on the potential in combination with the linearization of the Poisson equation is used.
The efficiency of this approach in problems of the class in question is demonstrated.

Keywords: Numerical simulation, semiconductor heterostructures, Schrödinger and Poisson equa-
tions, electron density, mobility of charge carriers.
DOI: 10.1134/S0965542516010048

INTRODUCTION
The modern trend in the development of high-frequency semiconductor engineering is the aspiration

to miniaturization, maximization of the concentration of charge carriers, and maximization their mobil-
ity. To this end, multilayer nanosized heterostructures are used in which the motion of charge carriers in
one or more directions is restricted due to potential barriers (see [1]). The main factors affecting the local-
ized carrier (two-dimensional electron gas) transport channels in the vicinity of the heterointerface are the
concentration of doping carriers in the barrier layer and the presence of a surface charge on the heteroin-
terface. The surface charge is characteristic of wurtzite structures—it is caused by spontaneous and piezo-
electric polarization (see [2]).

In the Computing Center of the Russian Academy of Sciences, the following procedure for multiscale
simulation of semiconductor structures has been implemented (see [3]). Three characteristic scale levels
are distinguished. At the atomic level, the system is described using crystallographic information (see [4])
and a quantum mechanical model based on the electron density functional theory [5, 6]. The results are
passed to the nanoscale model, where they are used to calculate the distribution of charge carriers in the
heterostructure. At this level, the mathematical model is a system of the Schrödinger and Poisson equa-
tions (see [7]). The use of the concept of effective electron mass allows us to avoid the detailed consider-
ation of interactions of electrons with the nuclear frame and thus change from the atomic scale to real
nanosized heterostructure scale. Of major interest is the distribution of charge carrier density across the
multilayer structure and the detection of a localized high-concentration band (electron gas). For the het-
erosystems in which the quantum restriction is achieved by doping the barrier layer with impurities, the
Poisson equation includes a distributed source. In wurtzite structures, there is spontaneous and piezoelec-
tric polarization as a result of which the charge is concentrated in the interlayer interface. This results in
the occurrence of a strong localized source; therefore, the solution must have a high resolution. The data
about the wave functions and the distribution of charge carrier density across the multilayer structure
obtained by solving the Schrödinger and Poisson adjoint equations are fed to the next level model, where
the mobility of carries in the longitudinal direction is calculated. In this calculation, a wide range of scat-
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tering mechanisms—scattering by optical and acoustic phonons, by the roughnesses of the heterointer-
face, by charged centers and dislocations, and piezoelectric scattering—are taken into account (see [3]).

In this paper we focus on numerical simulation on the nanoscale level. At this level, the local compu-
tational procedures used to solve the Schrödinger and Poisson equations are combined in a unified itera-
tion process aimed at making the solutions self-consistent. A key point is a strong interrelation of equa-
tions, which is characteristic for this class of problems; hence, the convergence problem of global itera-
tions arises. This problem is especially significant in the case of wurtzite structures, where a strong
localized charge source appears on heterointerfaces.

MATHEMATICAL MODEL
A typical scheme of a nanosized semiconductor heterostructure is shown in Fig. 1 (borrowed from [8]).
This heterostructure was grown in the Institute of Semiconductor Physics of the Siberian Branch of

the Russian Academy of Sciences based on gallium nitride and triple solutions (see [8]). The presence of
layers made of semiconductors with different width of the forbidden gap in combination with polarization
effects ensures the creation of a quantum well for electrons of a width of several nanometers in the neigh-
borhood of the heterointerface in the layer with the lower width of the forbidden gap (GaN). The motion
of electrons in the direction perpendicular to the heterointerface is bounded, and the energy levels are
quantized. In these levels, the electron can freely move in the plane of the heterointerface. Two-dimen-
sional electron gas is formed (the region where the two-dimensional electron gas is formed is shown by
dots in Fig. 1).

The mathematical model describing the distribution of electrons in such structures is a system of the
Schrödinger and Poisson equations (see [7, 9]). Note that the motion of charge carriers in semiconductor
devices can be restricted not only in one direction (two-dimensional electron gas) but also in two (quan-
tum wire) and three (quantum point) directions (see [1]). This is usually achieved by applying voltage in
the corresponding bands. In the general case, the problem of simulating heterostructures is stated in three-
dimensions. The mathematical model is as follows:
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Fig. 1. Multilayer semiconductor heterostructure (see [8]).
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Here  and  are energy levels an corresponding wave functions, n(r) is the electron density,  is
Planck’s constant, eis the electron charge,  is the effective electron mass,  is the position of the Fermi
level,  is the electrostatic potential,  are the concentrations of the donor and acceptor impuri-
ties,  are the densities of charges on the interfaces, δ is the delta function,  are the positions of the inter-
faces,  is the dielectric constant of the material,  is the shift of the conduction band of the material,

 is Boltzmann’s constant, and T is the temperature. Model (1)–(4) takes into account the fact that ,
ε, and  may vary from level to level. However, the temperature in the heterostructure remains con-
stant.

In the notation of Eqs. (1)–(4), the transverse direction (the coordinate ) is distinguished, which
reflects the layer-by-layer growth of the structure and the dependence of certain characteristics only on
this coordinate.

Problem (1)–(4) is typically solved in a rectangular domain Ω (an example of such a domain is shown
in Fig. 1), which is typical for many semiconductor devices. The conditions on the boundary Γ of Ω must
reflect the heterostructure operation. Typically, Ω is much larger than the domain in which the quantum
restriction is realized; therefore, it is reasonable to state the uniform Dirichlet boundary condition for the
wave function: . Depending on the heterostructure operational conditions, the conditions for the
electrostatic potential on different parts of the boundary can be specified as the values of the applied volt-
age (Dirichlet boundary conditions ), or as the values of the electric field strength (the Neumann

boundary conditions , where  is the normal derivative). The first type of boundary conditions

is typical for problems in which the quantum restrictions are reached due to an external electric field
(quantum wires in the two-dimensional case and quantum points in the three-dimensional case) and in
the contact regions between the semiconductor and metals. The second type is often used on the bound-
ary at the substrate side, where the electric field strength is zero (the uniform Neumann boundary condi-
tion.

The solution to the eigenvalue problem (1) (the Schrödinger equation) depends on the electrostatic
potential ϕ, the distribution of which in the structure  is determined by the Poisson equation (2). The
right-hand side of the Poisson equation includes the electron density , which, in turn, is determined
by the energy levels  and the wave functions  according to the Fermi–Dirac statistics (3), (4).
Therefore, the problem is clearly of the adjoint type.

The self-consistent solution to this systems gives the desired energy levels  and the corresponding
wave functions , the profile of the potential well , and the distribution of electron density in the
heterostructure .

Let us briefly discuss how the main factors affecting the emergence of localized channels of charge car-
rier transport in the vicinity of the heterointerface are represented in the mathematical model.

The expression for the electron potential energy in Eq. (1)  includes the shift  of the
conduction band in the semiconductor material that causes the creation of a potential barrier, which con-
fines electrons to the quantum well.

For semiconductors with the sphalerite crystal structure, the most important factor is the concentra-
tion  of donors in the barrier layer; this concentration appears on the right-hand side of the Poisson
equation. For semiconductors with the wurtzite crystal structure, the major role is played by polarization
effects and related surface charges on heterointerfaces. This factor is represented in the mathematical

model by the term  in the Poisson equation. In this case, the two-dimensional electron gas
appears even without introducing donors into the barrier layer. The spontaneous and piezoelectric polar-
ization effects are described by quantum-mechanical models at the atomic level, which makes it possible
to calculate the densities of the surface charge on the interfaces (see [10]).

It is clear that the distribution of electron density in the multilayer heterostructure is affected by the
width and position of layers, as well as by other parameters of the mathematical model.
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Many problems concerning the calculation and optimization of multilayer semiconductor structures
are solved in the spatially one-dimensional statement, which allows one to determine the basic character-
istics of the two-dimensional electron gas. In this case, the mathematical model is as follows.

Note that difficulties due to the convergence of global iterations for obtaining a self-consistent solution
to the Schrödinger and Poisson equations clearly manifest themselves when the one-dimensional problem
is solved. For this reason, the analysis in this paper is based on the one-dimensional model.

Consider the statement of the boundary conditions in more detail.
On the boundaries of the system (z = 0, z = L, where L is the total thickness of the multilayer structure)

the wave functions must vanish:

, .

On the left boundary z = 0, a potential barrier , which is formed in the contact semiconductor–metal
layer (Schottky barrier) is typically specified. In addition, the shift  due to the applied voltage may be
specified. The behavior of the potential on the right boundary z = L is determined by the position of the
conduction band of the corresponding material relative to the Fermi level. In most cases, a natural con-
dition in this case is the absence of the electric field. Thus, the boundary conditions for the Poisson equa-
tion are

, .

COMPUTATIONAL ALGORITHMS

It has already been mentioned above that the equations in the problem are coupled; therefore, the solu-
tions to the Schrödinger and Poisson equations must be iteratively made consistent. To this end, the local
computational procedures used for solving these equations are joined into a global iterative loop. The
computation process can be schematically represented as follows.

After executing an iteration step, we have the distribution  of the electron density in the system.
Using this information, we solve the Poisson equation

The resulting distribution  of the potential in the system is used to solve the Schrödinger equation

As a result, we obtain significant (i.e. those that make a contribution to the increase of carrier concen-
tration) energy levels and the corresponding wave functions , .
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Next, using the Fermi–Dirac statistics, the new distribution of electron density in the system is calcu-
lated by the formula

In the class of problems under consideration, the equations are tightly coupled, which gives rise to the
convergence problem of successive approximations. To ensure the convergence, the lower relaxation

,

where  is the final distribution of electron density on this iteration, can be used.

Numerical experiments on a wide class of semiconductor heterostructures show that a very small relax-
ation parameter ω should be used (the typical value of ω is 0.025), which considerably affects the conver-
gence rate of global iterations. In a number of problems, an algorithm with an adaptive relaxation param-
eter can be constructed; however, this approach is difficult to be made universal. Note that similar diffi-
culties as applied to the simulation of sphalerite structures were reported in [11]. The situation is much
more complicated when semiconductors of wurtzite structure with charges localized on heterostructures
are considered.

In this paper we solve this class of problems using an approach based on the local approximation of the
implicit dependence of the electron density on the potential (see [11]). This approach proved to be effec-
tive in the simulation of the charge distribution in sphalerite heterostructures (see [12, 13]). The following
approximate formula for the electron density was obtained using perturbation theory:

 (5)

here,  is the potential obtained at the preceding global iteration step.

Since formula (5) considerably improves the efficiency of computational algorithms, we outline its
derivation here.

Consider the increment of the potential . The corresponding increment of the electron
density  caused by the variation of the wave functions  and the energy levels  is

where  and .

In the linear approximation,  can be written as

According to linear perturbation theory (see [14]), we have
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Taking into account the symmetry of the second term with respect to the indices, the formula for the
electron density takes the form

Due to the orthonormal property of the wave functions, we have  =  –

, which yields

This allows us to obtain the desired approximation of the dependence of the electron density on the
potential

The use of this approach yields the modified Poisson equation with the explicit nonlinear term :

.

The modified Poisson equation can be solved using the Newton–Raphson approximation (see [15]):

,
,

,

.

Here the superscript (p) indicates the function obtained at the preceding local iteration step.
In this paper, we solve the Schrödinger and Poisson equations using finite difference methods. The

approximation of derivatives by central differences reduces the problem at each global iteration step to
solving the eigenvalue problem for a symmetric sparse banded matrix (a discrete analog of the Schrödinger
equation) and to solving simultaneous algebraic equations (a discrete analog of the Poisson equation).
The size of the matrices can be large because the resolution for the thin layer containing the two-dimen-
sional electron gas must be sufficiently high; moreover, computations are repeated many times in the iter-
ative process. Therefore, the algorithms must be computationally efficient. The solution of the discrete
analog of the Schrödinger equation is the most computationally costly part. For this reason, we must take
into account the position of the significant energy levels. According to the Fermi–Dirac statistics, the
contribution to the increase of carrier concentration in the two-dimensional electron gas is made by the
electrons on low energy levels. Information about the lower boundary is obtained from the solution to the
Poisson equation at the current global iteration: . The upper level can be estimated
using (4). It is of primary importance that, due to the features of the Fermi–Dirac distribution, the num-
ber of electrons with the energy exceeding the Fermi level more than by kbT decreases practically exponen-
tially. This localization makes it possible to use efficient techniques for finding eigenvalues in combination
with inverse iterations for determining the grid wave functions.
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NUMERICAL EXPERIMENTS
First, we consider the case when the semiconductor materials have the sphalerite crystal structure. By

way of example, consider the three-layer heterostructure Al0.3GaN/GaN/Al0.3GaN (see [16]). The thick-
ness of the layers is 15.2 nm for the Al0.3GaN barrier layer, 8 nm for the GaN layer, and 30 nm for the
Al0.3GaN layer. The other data (see [16]) are as follows. The dielectric constants of the materials are 8.9ε0
for GaN and 8.5ε0 for Al0.3GaN, where ε0 is the permittivity of vacuum. The effective mass of the electron
was assumed to be 0.228m0 for both materials (m0 is the electron rest mass). The conduction band shift

 was assumed to be equal to 0.63 eV. The potential on the external surface of the heterostructure was
found from the condition  eV (the energy was counted from the Fermi level).

We have already mentioned that in the case of a sphalerite crystal structure, the proper potential bar-
riers are created by doping the barrier layer with a donor impurity. In the case under consideration, the
volume concentration of impurity is 6 × 1018 cm–3. Here and below in this section, we consider the one-
dimensional problem. Figure 2 shows the distribution of the potential energy in the heterostructure depth
(Fig. 2a, curve 1 with respect to the left vertical axis), the distribution of electron density (Fig. 2a, curve 2
with respect to the left vertical axis), and the wave functions (Fig. 2b, the curve indices correspond to
increasing energy levels, beginning with the lowest one). In Fig. 2a, we clearly see a bend on the potential

cEΔ
(0) 1e− ϕ =

Fig. 2. (a) The distribution of the potential energy in the heterostructure depth (1, the left vertical axis) and electron den-
sity (2, the right vertical axis); (b) wave functions corresponding to the three lowest energy levels. Sphalerite crystal structure.
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energy curve due to doping the barrier layer and a potential well in the GaN layer, which results in the for-
mation of a localized band with a high electron density (two-dimensional electron gas). The total electron
density in the two-dimensional electron gas is 3 × 1012 cm–2. The results are in good agreement with the
data presented in [16]. Figure 3 illustrates the convergence of global iterations for the structure in question.
Here, curve 1 corresponds to the successive approximation method with lower relaxation; curve 2 corre-
sponds to the approximation of the nonlinear dependence of electron density on potential (no lower relax-
ation is needed). The error was found as the difference between the lowest energy levels (the minimum
eigenvalue for the Schrödinger equation) obtained at adjacent iterations. It is seen that the convergence
rate is higher in the second case. In combination with the linearization of the Poisson equation, the pro-
posed approach considerably reduces the computational cost. Note that the choice of difference between
the lowest energy levels as the quantity characterizing the error was made in accordance with numerous
numerical experiments, which show that the convergence with respect to the lowest energy levels ensures
the convergence with respect to other possible criteria because the low energy electrons make the major
contribution to the distribution of electron density, which ultimately affects the distribution of the elec-
trostatic potential.

Now consider semiconductor materials with a wurtzite crystal structure. Consider the two-layer case
Al0.3GaN/GaN (the thickness of the Al0.3GaN layer is 30 nm), which is thoroughly studied both experi-
mentally and theoretically (see [2]). Here and in what follows, the initial data for computations were found
using the approximation dependences (see [2])

,

, ,

,

where  is the mole fraction of aluminum in the AlGaN alloy. The boundary value  for the
potential was used.

Figure 4 shows the distributions of potential energy and electron density in the heterostructure depth
and the wave functions. The curve enumeration is the same as in Fig. 2. The potential well profile and the
formation of the two-dimensional electron gas are caused by the presence of a surface charge on the het-
erointerface. According to the ab initio quantum mechanical calculations (see [10]), the charge density is
1.34 × 1013 e C/cm2. In this case, the total density of electrons in the two-dimensional electron gas is
1.14 × 1013 cm–2, which is considerably higher than the similar density for sphalerite crystal materials. Fig-
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Fig. 3. Convergence of global iterations. Curve 1 corresponds to the successive lower relaxation method; 2 corresponds to
the approximation of the nonlinear dependence of electron density on potential. Sphalerite crystal structure.

0
−6

−4

−2

0
Error/Lg

40 80
Iteration number

120 160

1

2



COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS  Vol. 56  No. 1  2016

NUMERICAL SIMULATION OF THE DISTRIBUTION 169

ure 5 illustrates the convergence of global iterations (the curve enumeration is the same as in Fig. 3). It is
seen that the convergence of successive approximations is slower than in the case of the sphalerite crystal
structure. The use of the approximation of the nonlinear dependence of electron density on the potential
considerably accelerates the convergence of global iterations (almost by an order of magnitude in the case
under consideration).

Figure 6 illustrates the dependences of the total density of electrons in the two-dimensional electron
gas on the content of Al in the AlxGaN layer. The solid curve represents the numerical solution and the
x signs correspond to the approximation of experimental data (see [2]). It is seen that the numerical and
experimental results are in good agreement.

In conclusion, we present in Fig. 7 numerical results for the multilayer structure shown in Fig. 1. The
enumeration of curves is similar to that in Figs. 2a and 4a. In this structure, the GaN layer on the barrier
layer surface prevents its oxidation. The role of the thin AlN layer can be seen in Fig. 7. In Figs. 4a and 7,
we see a small difference in the distribution of the carrier concentration in the vicinity of the heterointer-
face. The interlayer AlN reduces the penetration of electrons into the barrier layer, which favors the higher

Fig. 4. (a) The distribution of the potential energy in the heterostructure depth (1, the left vertical axis) and electron den-
sity (2, the right vertical axis); (b) wave functions corresponding to the three lowest energy levels. Wurtzite crystal structure.
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Fig. 5. Convergence of global iterations. Curve 1 corresponds to the successive lower relaxation method; 2 corresponds to
the approximation of the nonlinear dependence of electron density on potential. Wurtzite crystal structure.
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Fig. 6. The dependence of the total electron density in the two-dimensional electron gas on the Al concentration in the
barrier layer. The solid curve represents the numerical solution and the x signs correspond to the approximation of exper-
imental data (see [2]).
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mobility of electrons in the two-dimensional electron gas. However, the difference in the total density of
electrons is insignificant—about 1%.

Thus, the proposed numerical simulation methods and tools make it possibly to quickly analyze vari-
ous multilayer nanosized heterostructures taking into account polarization effects. In combination with
the simulation of mobility of charge carriers in such structures (see [3]), this creates a basis for solving a
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number of optimization problems in modern microwave electronics. Among these problems are the design
of heterostructures that guarantee the maximum concentration of carriers and their maximum mobility
(the maximum conductivity) and inverse problems of determining the characteristics of grown hetero-
structures based on experimental data concerning the concentration and mobility of carriers in the two-
dimensional electron gas if these characteristics cannot be measured directly.

CONCLUSIONS
A three-layer scheme for simulating nanosized semiconductor heterostructures with account for spon-

taneous and piezoelectric polarization effects is described. It combines quantum mechanical calculations
at the atomic level for calculating the charge density on heterointerfaces, the calculation of carrier distri-
bution in the heterostructure based on solving the Schrödinger and Poisson equations, and the calculation
of electron mobility in the two-dimensional electron gas with regard to various scattering mechanisms. To
speed up the computations of electron density in the heterostructure, an approach based on the approxi-
mation of the nonlinear dependence of the electron density on potential in combination with the linear-
ization of the Poisson equation is used. The efficiency of this approach for the problems in question is
demonstrated. The proposed simulation methods and tools offer great capabilities for solving optimiza-
tion problems that are important for microwave electronics.
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