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INTRODUCTION

At present, the development and application of optimization methods seems to be an especially prom-
ising approach to the important task of predictive computer simulation of crystalline structures with the
use of multiscale techniques (see [1, 2]). In this approach, results of the first-principle simulation [3, 4] of
atomic structures and electron properties of systems consisting of 200—1000 atoms are used as input data
for the simulation of more complex structures consisting of 1000—1000000 atoms. Such approaches pro-
vides ample opportunities for the predictive simulation of structures with defects and make it possible to
consider various dynamic (time-dependent) processes, such as diffusion and adhesion. At each scale level,
the problem under study can be stated in an extremal formulation and suitable optimization methods can
be applied. At the first scale level, the optimization problem of finding a configuration of basis atoms cor-
responding to the minimum total energy of the system is solved within the framework of the theory of elec-
tron density functionals [2, 3] by minimizing the energy functional of the system. This approach is imple-
mented in well-known application packages, such as VASP (http://cms.mpi.univie.ac.at/vasp/) and
Quantum ESPRESSO.

The number of particles in the considered system can be increased by passing to the next scale hierar-
chy level, namely, to molecular-dynamical simulation. Empirical interatomic potentials are used at this
level. An important stage in molecular-dynamical simulation is the structural identification of potentials
for a particular crystalline material. This means the selection of the form of a potential (determination of
a potential structure) suitable for describing a particular crystalline structure, which is characterized by its
chemical composition, geometry, and the type of chemical bonding. The parameters of the selected inter-
atomic potential are determined by solving the optimization problem of parametric identification. Local
and global optimization methods are applied (see [5, 6]). The physical parameters produced by first-prin-
ciple methods can be used as reference values in solving this optimization problem (see [6]).

STATEMENT OF THE OPTIMIZATION PROBLEM

Formally, the optimization problem can be written as the minimization of the functional

m s .
F© =Y o(f®-f) > min, EeX, (1)
i=l
where f, is the reference value of the ith characteristic, f;(€) is the value of this characteristic obtained by
computations for a given set of basis atoms, & € R" is the vector of parameters to be tuned, and o, is a
weighting coefficient. The feasible set X — R" is a parallelepiped whose boundaries are chosen so as to
contain the possible range of the parameters. In problem (1), the task is to find a set of parameters & € R"
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minimizing the function F(§). This set will ensure the minimum deviation of the computed material char-
acteristics from the reference values, thus describing the simulated crystal properties in the most precise
manner.

Below, we propose an approach based on reproducing the elastic properties of the crystal. More specif-
ically, the approach is based on the cohesion energy value computed with the help of first-principle sim-
ulation, on experimentally determined elastic constants, and on other major characteristics of the struc-
tural properties of the material under consideration. The number of terms in (1) varies depending on the
material.

As a result, we consider the function

F@pe&0) = (04 — 4)) - min,

1

where &,...§, are the potential parameters to be optimized and the values A, are obtained by ab initio com-
putation or experimentally.

A solution is sought on the set X € R” of all admissible values of the desired parameters, where

E=E,..., &, € X € R" is the vector of tuned parameters.

The form of the minimized function F(§,, ..., §,) is chosen depending on the chemical composition,
the crystalline structure, and the type of bonding of the simulated material. Even in the simplest cubic
case, F(§,, ..., §,) is a multiextremal function.

To solve the problem at the initial stage, we need to specify the admissible ranges of searching for poten-

tial parameters: [;,&;], i = 1, ..., n, where n is the total number of potential parameters to be determined.
This can be done using various methods. Below, we show how this was done in solving the parametric iden-
tification problem for the parameters of the Tersoff potential (see [7]). A point with parameter values
&,, ..., &, sufficiently close to the global minimum is found using global optimization methods, such as
Monte Carlo, scanning, or Granular Random Search [7]. Next, the point found is used as an initial one
in a more accurate search for a local minimum, for example, by applying the gradient descent method with
adaptive step size control or using granular radial search (GRS) [8].

It should be noted that the procedures described above are executed for particular, fixed positions of
the basis atoms in the considered crystalline structure. As a result, after solving the parametric identifica-
tion problem in this formulation, we do not know whether the positions of the basis atoms correspond to
the minimum of the potential energy of the system.

Accordingly, the next step is to compute the forces acting on each atom in an elementary cell and the
corresponding displacements of the atoms to positions associated with the minimum of the energy. This
procedure is known as the relaxation of the structure. The directions of the forces are calculated according
to the potential energy gradient. There is an alternative relaxation procedure, in which optimization is
performed with respect to the coordinates of the particles so that the particles are placed in positions cor-
responding to the minimum of the total potential energy of the system.

If, with the potential parameters found, the atoms are shifted significantly from the required equilib-
rium positions or the material properties differ substantially from the required ones, the parametric iden-
tification procedure for the chosen potential should be repeated with the characteristics to be refined
added to the set of reference values in (1).

NUMERICAL EXPERIMENT: SOLUTION OF A REAL-WORLD PROBLEM

Consider the problem of selecting parameters of the Tersoff potential [7] in the case of monocrystals.
This potential is a multiparticle one based on the concept of the order of bonds: the bonding force between
two atoms is not constant, but depends on the local environment. Such potentials can be used to describe
the properties of covalently bonded crystals (for example, carbon, silicon, and germanium).

With the use of the Tersoff potential, the cohesion energy E_,, of the interaction of a group of atoms
can be calculated using the formula
1
Ecoh = Ez Vij >

i)
Vij = fc("y)(VR(’}y) - bijVA(rij )5
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I, r<R-R,,
£.r) = %(1 - sin(n(r—_R)B, R—Ry <r<R+Ry,
0. r>R+R..
Valry) = <Pexp (-pV2S(; ~ 1),
Vi) = S exp (—B\Ew : n)j,
o

by = (1 +(YC1‘1)") )
Qi/ = Z fc(rik)g(eijk)wik >

k#i,j

o =exp(1* (= 1)),

2 2
c c
8O =1+ (d) d” +(h—cosBy)”

The variables r; denote the distances between the atoms indexed by i and /, respectively, and 0, is the
angle made by the vectors joining atom ;/ to atoms j and k, respectively. The Tersoff potential involves
12 parameters, which are specific to the substance modeled: D,, r,, B, S, n, v, A, ¢, d, h, R, R_,;. Note that
Rand R, are determined from experimentally measured geometric characteristics of the substance and
do not need to be chosen.

In what follows, the parameters of the Tersoff potential are identified for isotropic crystals with a cubic
crystalline lattice. According to Hooke’s law, small deformations are proportional to stresses (see [9]):

o=Cg;

here, o is the stress tensor; € is the strain tensor; and C is the elastic constant tensor, whose components
are given by the expressions

1 OE
YV oe,0e j ’
where g; are the corresponding components of the strain tensor of the crystal.

i,j=1,...,6, (2)

Thus, C;(€) are the elastic constants computed using formula (2) with the use of the cohesion energy

calculated with the help of the chosen interatomic potential and @,.j are experimental values of the elastic

constants. The number of independent elastic constants is determined by the crystalline structure of the
modeled material. For example, in the case of a cubic crystal, there are only three independent elastic

constants: C,;, C,,, and Cy, (see [9, 10]). The other tensor components either vanish or coincide with these
three. In the case under consideration, the objective function to be minimized in the parameter identifi-
cation problem is given by

1) = 0(EEQ) — E)* + 0,(a) — )" + 0y(BE) - B + 0,(C'®) - €
+ 05(Cs(8) — Cup)* + 068 - &),

where & = (D,,r.,B,S,n,Y,\c,d,h) is the vector of parameters to be identified. The objective function
involves the following quantities:
Eis the cohesion energy of the system divided by the number of atoms in the simulated group (specific

energy);
a is the lattice constant (characteristic length);

B is the bulk modulus;
C' is the shear modulus;

C,, is the elasticity constant;
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Fig. 1. Single cell of the silicon crystalline lattice.

¢ is the Kleinman parameter, which characterizes the additional change in the lattice under a shift
deformation. This change is caused by the tendency of the atoms to occupy an energetically optimal posi-
tion.

The parameter C,, is a component of the elastic constant tensor, and the bulk and shear moduli are cal-
culated in terms of the components C,;, and C,, according to the formulas

B=(C,,+2C,)/3, C=(C,~-Cp)/2.

Obtained experimentally or by quantum mechanical methods for monocrystalline silicon, the refer-
ence values of the components of the objective functions were taken from [8]:

A

E=-463 4=543 B=097, C=0.51, C,=0.79, =0.52.

The parallelepiped X = [é, é] ={EeR": éi <x; < E_,,.} for specifying initial approximations was chosen
so that it contained all possible parameter values. We analyzed known values of the coefficients of the Ter-
soff potential for monocrystalline silicon. The boundaries were chosen so that they contained these values:

£=(0.5,0.5,0.5,0.5,0.1, 5107, 0.5, 10000, 1,-2),
£=(10,5,5,5,2,3x107 3, 200000, 30, -0.1).

All computations were performed for a single silicon lattice cell, which consists of 18 atoms (Fig. 1).
Not only the interactions between the cell atoms, but also the interactions with neighboring atoms within

the cutoff radius R, were taken into account.

cut

The cohesion energy was calculated using the formulas for the Tersoff potential. Then the resulting
value was divided by the number of atoms in the cell to obtain specific energy. The components B and C'
were calculated by approximating the ratio of the energy variation to the corresponding small lattice defor-
mation. The deformation used for computing C,, is such that the some of the atoms shift from the posi-
tions determined by the deformation to occupy an energy-optimal position. This is simulated with the
help of a procedure for finding the minimum of energy depending on the displacements of the group of
internal atoms in the lattice determined by the Kleinman parameter. This one-dimensional minimization
procedure is used to determined the lattice constant a for given potential parameters.

A software package has been implemented, which includes the following modules:

(1) amodule generating a crystalline lattice, which fills up the atomic coordinate array according to the
type of the crystalline lattice and its characteristic size;

(2) a module computing the basic material characteristics and the objective function F(x);

(3) an optimization module searching for a minimum of F(x) on the feasible set X .

The most complicated component of the software package is the optimization module, which was
implemented using the BNB-Solver library (see [11]). The problem in question is of the black box class,
since there is no explicit expression for the objective function and its value is produced by a complicated
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numerical procedure. This problem was solved by combining search globalization methods, which ensure
the diversification of the search within the feasible parallelepiped, and local methods, which find a local
minimum in a given neighborhood.

As a search globalization method, we used the Monte Carlo method, which generated a sequence of
random initial approximations within the feasible parallelepiped. Uniformly distributed pseudorandom
numbers in each coordinate were used within the parallelepiped.

Two local optimization algorithms were tested. The first was based on the gradient descent method with
adaptive step size control. The gradient was numerically approximated by finite differences. The second
algorithm was based on the GRS method proposed in [8]. According to this method, one of the parame-
ters undergoes a random shift from the initial point within a given range g. If this leads to a smaller value
of the objective function, then the newly found value is used as an initial one and a new shift is executed.
The original initial value is chosen at random in the parallelepiped X. If the fraction of “successful” shifts
leading to smaller objective function values is reduced below a given threshold, then the granularity g is
decreased. The algorithm terminates when the upper bound on the number of iterations is surpassed or
when the granularity becomes too small.

Since the identified parameters differ widely in characteristic values, they have to be rescaled to ensure
the effective performance of the algorithm. In this case, we used linear rescaling with the coefficient mul-

tiplying the corresponding parameter equal to 1/ E,- , Where E,. = (él + E;) /2.

Preliminary numerical experiments showed that the gradient descent algorithm is outperformed by
GRS as applied to the given problem. Under constraints on the number of iterations so that the running
time was roughly identical, the GRS algorithm ensured considerably higher accuracy. In an experiment
with eight runs starting from various initial approximations, the GRS method produced an optimal value
of 0.0002, while the gradient descent yielded a minimal objective function value of 0.1987.

The numerical experiment was organized as follows. As many as 32768 random initial approximations
uniformly distributed in X' were generated. Next, the GRS algorithm was applied to these approximations.
A server with two four-core Intel(R) Xeon(R) CPU E5620 2.40 GHz processors was used for the compu-
tations. To accelerate the computations, we run eight parallel processes, each working with 4096 initial
approximations. The total run time was about 2 days.

Among the local minimizers found, only those with an objective function value not exceeding 10~>
were further processed. The local minimum condition was additionally numerically checked at these
points. Specifically, the objective function was computed at some points chosen at random in a neighbor-
hood of given radius. If its value in at least one of them was smaller than the believed minimum, the check

was considered failed. The neighborhood was specified as U(x) = {y eR":|x; -yl < p}, where p = 0.1.
The number of points at which the objective function was computed was set to 1000.

The check for a local minimum was successful for 11 generated points satisfying the condition
f@< 107°. The deviations of the found parameters from the reference values were analyzed. For each of
10 parameters, the deviation d; from its reference value was calculated using the formula

bx; —nl

d, =210 =10,
|7l

where x; is the value of the parameter and r; is its reference value. The circles in Fig. 2 show the deviations
for 10 identified parameters.

The results show that the parameters D,, r,, B, n, h were determined rather accurately with the objective
function used. The other parameters were identified to a varying degree of accuracy. For some of them,
the deviations were significant (1.5 times higher than the reference value).

If the last six parameters are fixed, then the distribution has the form shown in Fig. 3. In the case of
1024 initial approximations, the objective function values at 112 local minimizers were less than 0.001.
Although the number of points was tenfold more than in the case of 10 parameters, while the computa-
tions were less accurate, the scatter of the parameter values was noticeably lower, being in an acceptable
range.

Below are the parameter values for silicon corresponding to the point §0 at which the minimum objec-
tive function value v, = 5x 10~ was found and the vector E of reference parameter values from [11]:

&O = (2.36,2.34,1.48,1.73,0.95,1.34x10°°,0.79, 121010, 13.91, —0.42),
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Fig. 2. Deviations of ten parameters from their reference values for the local minima found.
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Fig. 3. Deviations of four parameters from their reference values for the local minima found.

€ =(2.36,2.34, 1.46, 1.48, 0.94, 1.25x10°°, 1.46, 113031, 14.25, —0.42).
The basic components of the objective function are
EE")=-4.63, a@E’) =542 BE")=0.98 CE")=0.5, C,E")=0.80, ¢E")=0.52.

The parameter values found coincide with their reference values up to the second digit.

These results suggest that, for the given numerical accuracy, some of the parameters are not uniquely
determined. Whether or not this accuracy of the identified parameters is acceptable will be determined in
a molecular-dynamical simulation, which is intended to perform in the future.
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The following approaches can be proposed for improving parameter identification:

1. Additional terms can be introduced into the objective function.

2. The “troublesome” potential parameters can be fixed at physically justified a priori values.

3. The numerical accuracy can be improved substantially by tuning the parameters of the methods used
or by applying other computational methods. Specifically, global Lipschitz optimization methods are
intended to be considered (see [12, 13]).

CONCLUSIONS

We addressed the problem of identifying the parameters of an interatomic potential, which is a stage in
the mathematical simulation of materials. The problem was given in the general formulation and was
specified for the Tersoff potential. Numerical experiments for silicon were performed. The results of the
experiments were used to compare the effectiveness of the optimization algorithms used and to estimate
the possibility of identifying various parameters. Approaches were proposed for overcoming the ambigu-
ities in the identified parameters.

The material properties in the above procedures were calculated at fixed relative coordinates of the
atoms (at fixed relative positions of the atoms in an elementary cell). However, this approach does not
guarantee that the given atom positions correspond to the minimum of energy for the resulting potential.
Accordingly, the next stage was the relaxation of the structure. For this purpose, the forces acting on each
of the atoms in an elementary cell (basis atoms) were calculated and the atoms were displaced according
to the driving forces so that their positions corresponded to the minimum of energy. The directions of the
forces were computed relying on the potential energy gradient.

If the atoms with the potential parameters found are shifted significantly from the required equilibrium
positions or the material properties differ substantially from the required ones, a secondary fitting proce-
dure correcting some of the resulting parameters has to be performed so that the coordinates of those
atoms whose deviations are beyond the accepted range are added to the set of reference values. This study
is planed to be conducted in the future.
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