II Международная конференция Математическое моделирование в материаловедении электронных компонентов 19-20 октября, 2020

## ПОСТРОЕНИЕ МОДЕЛИ ЭФФЕКТИВНОГО КОЭФФИЦИЕНТА ТЕПЛОПРОВОДНОСТИ ДЛЯ НАНОРАЗМЕРНЫХ ГЕТЕРОСТРУКТУР С ИСПОЛЬЗОВАНИЕМ МАШИННОГО ОБУЧЕНИЯ

Абгарян К.К., Колбин И.С.

ФИЦ ИУ РАН



#### Постановка задачи

Исследование применимости подходов машинного обучения для построения моделей эффективного коэффициента теплопроводности наноразмерных гетероструктур, в частности сверхрешеток.

Для этого предполагается генерация выборки на основе модели модального подавления и обучения нейронных сетей на ней.

# Схема расчета

Параметры материалов (база данных проекта almaBTE<sup>3</sup>, первопринципные расчеты)



- 1. Jesús Carrete et al. *almaBTE : A solver of the space-time dependent Boltzmann transport equation for phonons in structured materials.*
- 2. Mart'ın Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems.
- 3. https://almabte.bitbucket.io/database/

# Кинетическое уравнение Больцмана

Основными переносчиками тепла в полупроводниках и диэлектриках являются фононы: квазичастицы, описывающие колебания кристаллической решетки. При наличии теплового градиента распределение фононов может быть описано кинетическим уравнением Больцмана:

$$\frac{df}{dt} = \frac{\partial f}{\partial t}|_{diffusion} + \frac{\partial f}{\partial t}|_{scattering} = 0$$

$$rac{\partial f}{\partial t}|_{diffusion} = - 
abla T \mathbf{v} rac{\partial f}{\partial T}$$

#### Приближение времени релаксации

Кинетическое уравнение Больцмана является сложным интегродифференциальным уравнением. Для достаточно небольшого температурного градиента распределение фононов может быть выражено в приближении времени релаксации:

$$rac{f-f_0}{ au^0} = -
abla T {f v} rac{df_0}{dT} 
onumber \ f_0(\omega,T) = rac{1}{\exp(rac{\hbar\omega}{kT})-1}$$

#### Получение параметров релаксации

Эффективным способом получения коэффициентов релкасации является примемение первопринципных расчетов, что позволяет минимизировать количество эмпирических данных для вычислений.

Получаемые данные из первопринципных расчетов:

- Координаты атомов
- Межатомные силовые константы 2-го порядка для моделирования 2-х фононных взаимодействий
- Межатомные силовые константы 3-го порядка для моделирования 3-х фононных взаимодействий
- Диэлектрический тензор и эффективные заряды Борна для неаналитического поправочного члена

## Коэффициенты релаксации для сверхрешеток

Расчет ведется в приближении виртуального кристалла<sup>1</sup>.

$$rac{1}{ au_\lambda^0} = rac{1}{ au_\lambda^{3ph+}} + rac{1}{ au_\lambda^{3ph-}} + rac{1}{ au_\lambda^a} + rac{1}{ au_\lambda^b} \qquad \qquad \lambda \sim p, {f q}$$

 $\tau^{3ph+}$ - процессы абсорбции, один фонон из двух падающих<sup>1,2</sup>;

 $\tau^{3ph}$ - процессы эмиссии, один падающий фонон разделяется на два<sup>1,2</sup>;

 $\tau^{a}$ - сплавной член, зависит от послойного распределения компонентов<sup>3</sup>;

#### $\tau^{b}$ - барьерный член<sup>3</sup>.

- 1. Wu Li, L. Lindsay, D. A. Broido, Derek A. Stewart, and Natalio Mingo. *Thermal conductivity of bulk and nanowire Mg 2 Si x Sn 1-x alloys from first principles*.
- 2. Wu Li, Jesús Carrete, 1, Nebil A. Katcho, Natalio Mingo. ShengBTE : A solver of the Boltzmann transport equation for phonons.
- 3. J. Carrete, B. Vermeersch, L. Thumfart, R. R. Kakodkar, G. Trevisi, P. Frigeri f, L. Seravalli, J. P. Feser, A. Rastelli, N. Mingo. Predictive design and experimental realization of InAs/GaAs superlattices with tailored thermal conductivity.

#### Послойное распределение материалов

Для моделирования распределения материалов при росте сверхрешетки использовалась модель Мураки\*:

$$\bar{X}(i) = \begin{cases} 1, & \text{for } i < 1\\ 1 - \phi \left(1 - R^{i}\right), & \text{for } 1 \le i < n_{\text{ML}} \\\\ 1 - \phi \left(1 - R^{n_{\text{ML}}}\right) R^{i - n_{\text{ML}}}, & \text{for } i \ge n_{\text{ML}} \end{cases}$$

R - варьируемый параметр модели;

n<sub>мі</sub> - число монослоев первого материала в периоде сверхрешетки.

\* Muraki, K.; Fukatsu, S.; Shiraki, Y.; Ito, R. Surface Segregation of in Atoms During Molecular Beam Epitaxy and Its Influence on the Energy Levels in InGaAs/GaAs Quantum Wells.

#### Схема расчета параметров релаксации сверхрешетки



# Вычисление эффективного коэффициента теплопроводности

Для расчета эффективного коэффициента теплопроводности использовалась модель модального подавления:

$$egin{aligned} \kappa(L) &= \sum_\lambda \, S_\lambda C_\lambda || \mathbf{v}_k || \Lambda_\lambda \cos^2( heta_\lambda) \ S_\lambda &= rac{1}{1+2K_\lambda}^* & \Lambda_\lambda &= || \mathbf{v}_\lambda || au_\lambda^0 \ K_\lambda &= rac{\Lambda_\lambda |cos heta_\lambda|}{L} & C_\lambda &= rac{k_B}{N\Omega} (rac{\hbar \omega_\lambda}{k_BT}) f_0(f_0+1) \ f_0 &= f_0(\omega_\lambda,T) \end{aligned}$$

где *θ* - угол между **v** и направлением теплопереноса

\* B. Vermeersch, J. Carrete, N. Mingo. Cross-plane heat conduction in thin films with ab-initio phonon dispersions and scattering rates

# Формирование обучающей выборки

Обучающая выборка сформирована из результатов расчетов эффективного коэффициента теплопроводности в AlmaBTE с варьированием параметров:

• R — параметр модели Мураки, отвечающий за послойное распределение материалов в периоде сверхрешетки, варьировался от 0 до 0.9;

- х число монослоев первого материала (GaAs), варьировался от 1 до 20;
- у число монослоев второго материала (AIAs), варьировался от 1 до 20;
- Т температура окружающей среды, варьировалась от 100К до 500К;
- L толщина сверхрешетки, варьировалась от 1нм до 100мкм.

# Нейросетевые модели

Использовались многослойные сети прямого распространения с различными активационными функциями:

- **relu**, линейный выпрямитель: f(x) = 0, для x < 0, и f(x) = x, для x ≥ 0;
- tanh, гиперболический тангенс: f(x) = tanh(x);
- **sig**, логистическая функция: f(x) = (1 + e<sup>-x</sup>)<sup>-1</sup>.

Обучение НС-моделей велось с контролем переобучения методом **RMSProp** с шагом **0.0001**. Использование обучающей выборки:

- 60% непосредственно для обучения;
- 20% для контроля переобучения;
- 20% для верификации полученных НС-моделей (тестовая выборка).

## Результаты. СКО НС моделей на тестовой выборке

|   |      | n <sub>n</sub> | 6     | 8     | 10    | 12    | 14     | 16    | 18    | 20     |
|---|------|----------------|-------|-------|-------|-------|--------|-------|-------|--------|
| n | f    |                |       |       |       |       |        |       |       |        |
| 2 | relu |                | 2.673 | 1.335 | 1.473 | 0.808 | 0.681  | 0.679 | 0.691 | 0.551  |
|   | tanh |                | 2.067 | 1.564 | 1.428 | 1.293 | 1.326  | 1.565 | 1.174 | 1.022  |
|   | sig  |                | 2.049 | 1.922 | 1.784 | 1.677 | 2.014  | 1.245 | 1.598 | 1.625  |
| 3 | relu |                | 1.32  | 1.087 | 1.385 | 1.131 | 0.938  | 0.544 | 0.711 | 0.716  |
|   | tanh |                | 2.057 | 1.833 | 1.649 | 1.131 | 1.413  | 1.308 | 1.305 | 1.222  |
|   | sig  |                | 4.899 | 1.862 | 1.611 | 1.969 | 1.375  | 1.521 | 1.694 | 1.29   |
| 4 | relu |                | 1.411 | 0.809 | 1.004 | 0.896 | 1.191  | 0.646 | 0.693 | 0.952  |
|   | tanh |                | 2.552 | 1.589 | 1.614 | 1.643 | 1.591  | 1.329 | 1.704 | 1.936  |
|   | sig  |                | 4.737 | 4.891 | 1.968 | 4.997 | 4.981  | 4.915 | 4.962 | 1.639  |
| 5 | relu |                | 2.296 | 1.207 | 1.444 | 1.63  | 0.764  | 0.949 | 1.28  | 1.401  |
|   | tanh |                | 2.11  | 1.918 | 1.895 | 2.625 | 2.579  | 2.354 | 2.555 | 1.96   |
|   | sig  |                | 4.86  | 5.01  | 4.907 | 11.74 | 11.897 | 2.314 | 1.639 | 11.609 |

#### График 3-х слойной HC с ReLU и тестовой выборки







#### Спасибо за внимание

Работа выполнена при поддержке РФФИ (проекты 19-29-03051 мк и 18-29-03100 мк).

При проведении расчетов использовался вычислительный кластер ФИЦ ИУ РАН.